Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Malar J ; 23(1): 112, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641572

RESUMO

BACKGROUND: In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS: We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS: Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS: These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.


Assuntos
Anopheles , Mordeduras e Picadas , Malária Falciparum , Malária Vivax , Malária , Plasmodium , Animais , Feminino , Humanos , Anopheles/genética , Malária/epidemiologia , Peru/epidemiologia , Mosquitos Vetores , Malária Vivax/epidemiologia , Estações do Ano
2.
Genes (Basel) ; 14(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895241

RESUMO

Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Acetilcolinesterase/genética , Anopheles/genética , Resistência a Inseticidas/genética , Brasil , Peru/epidemiologia , Mosquitos Vetores/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Códon
3.
Am J Trop Med Hyg ; 109(2): 288-295, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37364858

RESUMO

The persistence of malaria hotspots in Datem del Marañon Province, Peru, prompted vector control units at the Ministry of Health, Loreto Department, to collaborate with the Amazonian International Center of Excellence for Malaria Research to identify the main vectors in several riverine villages that had annual parasite indices > 15 in 2018-2019. Anophelinae were collected indoors and outdoors for two 12-hour nights/community during the dry season in 2019 using human landing catch. We identified four species: Nyssorhynchus benarrochi B, Nyssorhynchus darlingi, Nyssorhynchus triannulatus, and Anopheles mattogrossensis. The most abundant, Ny. benarrochi B, accounted for 96.3% of the total (7,550/7,844), of which 61.5% were captured outdoors (4,641/7,550). Six mosquitoes, one Ny. benarrochi B and five Ny. darlingi, were infected by Plasmodium falciparum or Plasmodium vivax. Human biting rates ranged from 0.5 to 592.8 bites per person per hour for Ny. benarrochi B and from 0.5 to 32.0 for Ny. darlingi, with entomological inoculation rates as high as 0.50 infective bites per night for Ny. darlingi and 0.25 for Ny. benarrochi B. These data demonstrate the risk of malaria transmission by both species even during the dry season in villages in multiple watersheds in Datem del Marañon province.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Humanos , Anopheles/parasitologia , Peru/epidemiologia , Estações do Ano , Malária/epidemiologia
4.
PLoS One ; 18(1): e0280066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607981

RESUMO

Population subdivision among several neotropical malaria vectors has been widely evaluated; however, few studies have analyzed population variation at a microgeographic scale, wherein local environmental variables may lead to population differentiation. The aim of the present study was to evaluate the genetic and geometric morphometric structure of Anopheles nuneztovari and Anopheles albimanus in endemic localities of northwestern Colombia. Genetic and phenetic structures were evaluated using microsatellites markers and wing geometric morphometrics, respectively. In addition, entomological indices of importance in transmission were calculated. Results showed that the main biting peaks of Anopheles nuneztovari were between 20:00 and 22:00, whereas Anopheles albimanus exhibited more variation in biting times among localities. Infection in An. nuneztovari by Plasmodium spp. (IR: 4.35%) and the annual entomological inoculation rate (30.31), indicated high vector exposure and local transmission risk. We did not detect Plasmodium-infected An. albimanus in this study. In general, low genetic and phenetic subdivision among the populations of both vectors was detected using a combination of phenotypic, genetic and environmental data. The results indicated high regional gene flow, although local environmental characteristics may be influencing the wing conformation differentiation and behavioral variation observed in An. albimanus. Furthermore, the population subdivision detected by microsatellite markers for both species by Bayesian genetic analysis provides a more accurate picture of the current genetic structure in comparison to previous studies. Finally, the biting behavior variation observed for both vectors among localities suggests the need for continuous malaria vector surveys covering the endemic region to implement the most effective integrated local control interventions.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Malária/epidemiologia , Anopheles/genética , Colômbia/epidemiologia , Teorema de Bayes , Mosquitos Vetores/genética
5.
Parasit Vectors ; 15(1): 473, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527116

RESUMO

In recent years, global health security has been threatened by the geographical expansion of vector-borne infectious diseases such as malaria, dengue, yellow fever, Zika and chikungunya. For a range of these vector-borne diseases, an increase in residual (exophagic) transmission together with ecological heterogeneity in everything from weather to local human migration and housing to mosquito species' behaviours presents many challenges to effective mosquito control. The novel use of drones (or uncrewed aerial vehicles) may play a major role in the success of mosquito surveillance and control programmes in the coming decades since the global landscape of mosquito-borne diseases and disease dynamics fluctuates frequently and there could be serious public health consequences if the issues of insecticide resistance and outdoor transmission are not adequately addressed. For controlling both aquatic and adult stages, for several years now remote sensing data have been used together with predictive modelling for risk, incidence and detection of transmission hot spots and landscape profiles in relation to mosquito-borne pathogens. The field of drone-based remote sensing is under continuous change due to new technology development, operation regulations and innovative applications. In this review we outline the opportunities and challenges for integrating drones into vector surveillance (i.e. identification of breeding sites or mapping micro-environmental composition) and control strategies (i.e. applying larval source management activities or deploying genetically modified agents) across the mosquito life-cycle. We present a five-step systematic environmental mapping strategy that we recommend be undertaken in locations where a drone is expected to be used, outline the key considerations for incorporating drone or other Earth Observation data into vector surveillance and provide two case studies of the advantages of using drones equipped with multispectral cameras. In conclusion, recent developments mean that drones can be effective for accurately conducting surveillance, assessing habitat suitability for larval and/or adult mosquitoes and implementing interventions. In addition, we briefly discuss the need to consider permissions, costs, safety/privacy perceptions and community acceptance for deploying drone activities.


Assuntos
Aedes , Febre de Chikungunya , Doenças Transmitidas por Vetores , Infecção por Zika virus , Zika virus , Adulto , Animais , Humanos , Dispositivos Aéreos não Tripulados , Controle de Mosquitos , Larva , Mosquitos Vetores
6.
Am J Trop Med Hyg ; 107(4_Suppl): 160-167, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228907

RESUMO

Malaria remains endemic in 17 countries in the Americas, where 723,000 cases were reported in 2019. The majority (> 90%) of the regional malaria burden is found within the Amazon Basin, which includes nine countries and territories in South America. Locally generated evidence is critical to provide information to public health decision makers upon which the design of efficient and regionally directed malaria control and elimination programs can be built. Plasmodium vivax is the predominant malaria parasite in the Amazon Basin. This parasite species appears to be more resilient to malaria control strategies worldwide. Asymptomatic Plasmodium infections constitute a potentially infectious reservoir that is typically missed by routine microscopy-based surveillance and often remains untreated. The primary Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, has changed its behavior to feed and rest predominantly outdoors, reducing the efficiency of core vector control measures such as indoor residual spraying and distribution of long-lasting insecticide-treated bed nets. We review public health implications of recent field-based research carried out by the Amazonia International Center of Excellence in Malaria Research in Peru and Brazil. We discuss the relative role of traditional and novel tools and strategies for better malaria control and elimination across the Amazon, including improved diagnostic methods, new anti-relapse medicines, and biological larvicides, and emphasize the need to integrate research and public health policymaking.


Assuntos
Anopheles , Malária , Animais , Anopheles/parasitologia , Brasil/epidemiologia , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores/parasitologia , Peru/epidemiologia
7.
Am J Trop Med Hyg ; 107(4_Suppl): 168-181, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228921

RESUMO

The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.


Assuntos
Anopheles , Malária , Animais , Anopheles/fisiologia , Biologia , Brasil/epidemiologia , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Peru/epidemiologia
8.
Am J Trop Med Hyg ; 107(1): 154-161, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35895359

RESUMO

Understanding the reservoir and infectivity of Plasmodium gametocytes to vector mosquitoes is crucial to align strategies aimed at malaria transmission elimination. Yet, experimental information is scarce regarding the infectivity of Plasmodium vivax for mosquitoes in diverse epidemiological settings where the proportion of asymptomatically infected individuals varies at a microgeographic scale. We measured the transmissibility of clinical and subclinical P. vivax malaria parasite carriers to the major mosquito vector in the Amazon Basin, Nyssorhynchus darlingi (formerly Anopheles). A total of 105 participants with natural P. vivax malaria infection were recruited from a cohort study in Loreto Department, Peruvian Amazon. Four of 18 asymptomatic individuals with P. vivax positivity by blood smear infected colony-grown Ny. darlingi (22%), with 2.6% (19 of 728) mosquitoes infected. In contrast, 77% (44/57) of symptomatic participants were infectious to mosquitoes with 51% (890 of 1,753) mosquitoes infected. Infection intensity was greater in symptomatic infections (mean, 17.8 oocysts/mosquito) compared with asymptomatic infections (mean, 0.28 oocysts/mosquito), attributed to parasitemia/gametocytemia level. Paired experiments (N = 27) using direct skin-feeding assays and direct membrane mosquito-feeding assays showed that infectivity to mosquitoes was similar for both methods. Longitudinal studies with longer follow-up of symptomatic and asymptomatic parasite infections are needed to determine the natural variations of disease transmissibility.


Assuntos
Anopheles , Malária Vivax , Malária , Animais , Anopheles/parasitologia , Infecções Assintomáticas/epidemiologia , Estudos de Coortes , Humanos , Malária Vivax/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium vivax
9.
Artigo em Inglês | MEDLINE | ID: mdl-35663000

RESUMO

Background: Low-density and asymptomatic Plasmodium vivax infections remain largely undetected and untreated and may contribute significantly to malaria transmission in the Amazon. Methods: We analysed individual participant data from population-based surveys that measured P vivax prevalence by microscopy and polymerase chain reaction (PCR) between 2002 and 2015 and modelled the relationship between parasite density and infectiousness to vectors using membrane feeding assay data. We estimated the proportion of sub-patent (i.e., missed by microscopy) and asymptomatic P vivax infections and examined how parasite density relates to clinical manifestations and mosquito infection in Amazonian settings. Findings: We pooled 24,986 observations from six sites in Brazil and Peru. P vivax was detected in 6·8% and 2·1% of them by PCR and microscopy, respectively. 58·5% to 92·6% of P vivax infections were asymptomatic and 61·2% to 96·3% were sub-patent across study sites. P vivax density thresholds associated with clinical symptoms were one order of magnitude higher in children than in adults. We estimate that sub-patent parasite carriers are minimally infectious and contribute 12·7% to 24·9% of the community-wide P vivax transmission, while asymptomatic carriers are the source of 28·2% to 79·2% of mosquito infections. Interpretation: Asymptomatic P vivax carriers constitute a vast infectious reservoir that, if targeted by malaria elimination strategies, could substantially reduce malaria transmission in the Amazon. Infected children may remain asymptomatic despite high parasite densities that elicit clinical manifestations in adults. Funding: US National Institutes of Health, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Belgium Development Cooperation.

10.
Acta Trop ; 233: 106567, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714924

RESUMO

Malaria is an important public health problem, caused by Plasmodium parasites which are transmitted by female Anopheles mosquitoes that bite humans to obtain blood. The aim of this work was to identify the blood feeding sources of Anopheles female mosquitoes and calculate their entomological indices in relation to Plasmodium transmission. Mosquitoes were collected in malaria endemic localities of the Bajo Cauca and Pacific regions of Colombia using human landing catch and barrier screens, from 18:00 to 24:00 hr, in 2018-2021. Animal censuses within a radius of ∼250 m were carried out at each sampling site. A total of 2018 Anopheles specimens were collected and the most abundant species were Anopheles (Nys.) darlingi and Anopheles (Nys.) nuneztovari. The highest human biting rate was 77.5 bites per person per night (b/p/n) for An. nuneztovari in Córdoba-Pacific and 17.5 b/p/n for An. darlingi in Villa Grande-Bajo Cauca. Both species were active mainly in indoor unwalled rooms of the houses. Only An. nuneztovari from Córdoba-Pacific was infected with Plasmodium, with an entomological inoculation rate of 91.25 infective bites per year. Detection of blood feeding sources demonstrate that humans were the most common host, however, An. nuneztovari showed a preference for feeding on dogs and An. darlingi on pigs, dogs and Galliformes, rather than humans. These results contribute to entomological surveillance information and provide valuable data that can be used to tailor effective control interventions to minimize human-vector contact in these malaria endemic regions.


Assuntos
Anopheles , Doenças Endêmicas , Malária , Mosquitos Vetores , Animais , Anopheles/parasitologia , Colômbia/epidemiologia , Cães , Feminino , Galliformes , Humanos , Malária/epidemiologia , Mosquitos Vetores/parasitologia , Plasmodium , Suínos
11.
Parasit Vectors ; 15(1): 106, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346342

RESUMO

BACKGROUND: In Brazil, malaria is concentrated in the Amazon Basin, where more than 99% of the annual cases are reported. The main goal of this study was to investigate the population structure and genetic association of the biting behavior of Nyssorhynchus (also known as Anopheles) darlingi, the major malaria vector in the Amazon region of Brazil, using low-coverage genomic sequencing data. METHODS: Samples were collected in the municipality of Mâncio Lima, Acre state, Brazil between 2016 and 2017. Different approaches using genotype imputation and no gene imputation for data treatment and low-coverage sequencing genotyping were performed. After the samples were genotyped, population stratification analysis was performed. RESULTS: Weak but statistically significant stratification signatures were identified between subpopulations separated by distances of approximately 2-3 km. Genome-wide association studies (GWAS) were performed to compare indoor/outdoor biting behavior and blood-seeking at dusk/dawn. A statistically significant association was observed between biting behavior and single nucleotide polymorphism (SNP) markers adjacent to the gene associated with cytochrome P450 (CYP) 4H14, which is associated with insecticide resistance. A statistically significant association between blood-seeking periodicity and SNP markers adjacent to genes associated with the circadian cycle was also observed. CONCLUSION: The data presented here suggest that low-coverage whole-genome sequencing with adequate processing is a powerful tool to genetically characterize vector populations at a microgeographic scale in malaria transmission areas, as well as for use in GWAS. Female mosquitoes entering houses to take a blood meal may be related to a specific CYP4H14 allele, and female timing of blood-seeking is related to circadian rhythm genes.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Vetores de Doenças , Feminino , Estudo de Associação Genômica Ampla , Mosquitos Vetores/genética
12.
Genes (Basel) ; 12(12)2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946944

RESUMO

Identifying the species of the subfamily Anophelinae that are Plasmodium vectors is important to vector and malaria control. Despite the increase in cases, vector mosquitoes remain poorly known in Brazilian indigenous communities. This study explores Anophelinae mosquito diversity in the following areas: (1) a Yanomami reserve in the northwestern Amazon Brazil biome and (2) the Pantanal biome in southwestern Brazil. This is carried out by analyzing cytochrome c oxidase (COI) gene data using Refined Single Linkage (RESL), Assemble Species by Automatic Partitioning (ASAP), and tree-based multi-rate Poisson tree processes (mPTP) as species delimitation approaches. A total of 216 specimens collected from the Yanomami and Pantanal regions were sequenced and combined with 547 reference sequences for species delimitation analyses. The mPTP analysis for all sequences resulted in the delimitation of 45 species groups, while the ASAP analysis provided the partition of 48 groups. RESL analysis resulted in 63 operational taxonomic units (OTUs). This study expands our scant knowledge of anopheline species in the Yanomami and Pantanal regions. At least 18 species of Anophelinae mosquitoes were found in these study areas. Additional studies are now required to determine the species that transmit Plasmodium spp. in these regions.


Assuntos
Anopheles/genética , Mosquitos Vetores/genética , Plasmodium/parasitologia , Animais , Brasil/epidemiologia , Vetores de Doenças , Malária/transmissão , Mosquitos Vetores/metabolismo , Plasmodium/genética , Especificidade da Espécie
13.
Genes (Basel) ; 12(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828299

RESUMO

Mosquito susceptibility to Plasmodium spp. infection is of paramount importance for malaria occurrence and sustainable transmission. Therefore, understanding the genetic features underlying the mechanisms of susceptibility traits is pivotal to assessing malaria transmission dynamics in endemic areas. The aim of this study was to investigate the susceptibility of Nyssorhynchus darlingi-the dominant malaria vector in Brazil-to Plasmodium spp. using a reduced representation genome-sequencing protocol. The investigation was performed using a genome-wide association study (GWAS) to identify mosquito genes that are predicted to modulate the susceptibility of natural populations of the mosquito to Plasmodium infection. After applying the sequence alignment protocol, we generated the variant panel and filtered variants; leading to the detection of 202,837 SNPs in all specimens analyzed. The resulting panel was used to perform GWAS by comparing the pool of SNP variants present in Ny. darlingi infected with Plasmodium spp. with the pool obtained in field-collected mosquitoes with no evidence of infection by the parasite (all mosquitoes were tested separately using RT-PCR). The GWAS results for infection status showed two statistically significant variants adjacent to important genes that can be associated with susceptibility to Plasmodium infection: Cytochrome P450 (cyp450) and chitinase. This study provides relevant knowledge on malaria transmission dynamics by using a genomic approach to identify mosquito genes associated with susceptibility to Plasmodium infection in Ny. darlingi in western Amazonian Brazil.


Assuntos
Anopheles , Malária/genética , Plasmodium/patogenicidade , Animais , Anopheles/genética , Anopheles/parasitologia , Brasil , Suscetibilidade a Doenças , Vetores de Doenças , Feminino , Genética Populacional , Estudo de Associação Genômica Ampla/veterinária , Biblioteca Genômica , Interações Hospedeiro-Parasita/genética , Malária/parasitologia , Malária/transmissão , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Polimorfismo de Nucleotídeo Único
15.
Parasit Vectors ; 14(1): 236, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957959

RESUMO

BACKGROUND: Environmental disturbance, deforestation and socioeconomic factors all affect malaria incidence in tropical and subtropical endemic areas. Deforestation is the major driver of habitat loss and fragmentation, which frequently leads to shifts in the composition, abundance and spatial distribution of vector species. The goals of the present study were to: (i) identify anophelines found naturally infected with Plasmodium; (ii) measure the effects of landscape on the number of Nyssorhynchus darlingi, presence of Plasmodium-infected Anophelinae, human biting rate (HBR) and malaria cases; and (iii) determine the frequency and peak biting time of Plasmodium-infected mosquitoes and Ny. darlingi. METHODS: Anopheline mosquitoes were collected in peridomestic and forest edge habitats in seven municipalities in four Amazon Brazilian states. Females were identified to species and tested for Plasmodium by real-time PCR. Negative binomial regression was used to measure any association between deforestation and number of Ny. darlingi, number of Plasmodium-infected Anophelinae, HBR and malaria. Peak biting time of Ny. darlingi and Plasmodium-infected Anophelinae were determined in the 12-h collections. Binomial logistic regression measured the association between presence of Plasmodium-infected Anophelinae and landscape metrics and malaria cases. RESULTS: Ninety-one females of Ny. darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B were found to be infected with Plasmodium. Analysis showed that the number of malaria cases and the number of Plasmodium-infected Anophelinae were more prevalent in sites with higher edge density and intermediate forest cover (30-70%). The distance of the drainage network to a dwelling was inversely correlated to malaria risk. The peak biting time of Plasmodium-infected Anophelinae was 00:00-03:00 h. The presence of Plasmodium-infected mosquitoes was higher in landscapes with > 13 malaria cases. CONCLUSIONS: Nyssorhynchus darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B can be involved in malaria transmission in rural settlements. The highest fraction of Plasmodium-infected Anophelinae was caught from midnight to 03:00 h. In some Amazonian localities, the highest exposure to infectious bites occurs when residents are sleeping, but transmission can occur throughout the night. Forest fragmentation favors increases in both malaria and the occurrence of Plasmodium-infected mosquitoes in peridomestic habitat. The use of insecticide-impregnated mosquito nets can decrease human exposure to infectious Anophelinae and malaria transmission.


Assuntos
Culicidae , Animais , Brasil/epidemiologia , Culicidae/parasitologia , Culicidae/fisiologia , Ecossistema , Comportamento Alimentar , Humanos , Mordeduras e Picadas de Insetos , Malária/epidemiologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Plasmodium/isolamento & purificação , Prevalência
16.
J Infect Dis ; 223(12 Suppl 2): S99-S110, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906225

RESUMO

BACKGROUND: Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology. METHODS: By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department. RESULTS: Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions. CONCLUSIONS: High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior.


Assuntos
Anopheles/parasitologia , Mordeduras e Picadas , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Plasmodium vivax/isolamento & purificação , Adulto , Animais , Humanos , Incidência , Insetos Vetores , Malária/epidemiologia , Peru/epidemiologia , Plasmodium vivax/genética , Reação em Cadeia da Polimerase , Prevalência
17.
PLoS One ; 16(4): e0246215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831004

RESUMO

Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly due to fish farming development that was encouraged to improve local standards of living. Fish ponds can be productive breeding sites for Amazonian malaria vector species, including Nyssorhynchus darlingi, which, combined with high human density and mobility, add to the local malaria burden.This study reports entomological profile of immature and adult Ny. darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n = 420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban landscapes found no significant difference in the numbers of Ny. darlingi, corresponding to equivalent population density during the rainy to dry transition period. However, in the rural landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR = 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to February (rainy season), suggesting important role of fishponds for vector population maintenance during the seasonal transition in this landscape type. Adult sampling detected mainly Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance according to landscape profile: urban site 1 showed higher peaks of human biting rate in May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows similar HBR during the same sampling period (22, 24 and 21, respectively). This study contributes to a better understanding of the larvae biology of the main malaria vector in the Vale do Rio Juruá region and, ultimately will support vector control efforts.


Assuntos
Anopheles/fisiologia , Aquicultura , Malária , Mosquitos Vetores/fisiologia , Lagoas , Estações do Ano , Animais , Brasil , Larva/fisiologia , Dinâmica Populacional
18.
Sci Rep ; 11(1): 6477, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742028

RESUMO

The relationship between deforestation and malaria is a spatiotemporal process of variation in Plasmodium incidence in human-dominated Amazonian rural environments. The present study aimed to assess the underlying mechanisms of malarial exposure risk at a fine scale in 5-km2 sites across the Brazilian Amazon, using field-collected data with a longitudinal spatiotemporally structured approach. Anopheline mosquitoes were sampled from 80 sites to investigate the Plasmodium infection rate in mosquito communities and to estimate the malaria exposure risk in rural landscapes. The remaining amount of forest cover (accumulated deforestation) and the deforestation timeline were estimated in each site to represent the main parameters of both the frontier malaria hypothesis and an alternate scenario, the deforestation-malaria hypothesis, proposed herein. The maximum frequency of pathogenic sites occurred at the intermediate forest cover level (50% of accumulated deforestation) at two temporal deforestation peaks, e.g., 10 and 35 years after the beginning of the organization of a settlement. The incidence density of infected anophelines in sites where the original forest cover decreased by more than 50% in the first 25 years of settlement development was at least twice as high as the incidence density calculated for the other sites studied (adjusted incidence density ratio = 2.25; 95% CI, 1.38-3.68; p = 0.001). The results of this study support the frontier malaria as a unifying hypothesis for explaining malaria emergence and for designing specific control interventions in the Brazilian Amazon.


Assuntos
Anopheles/fisiologia , Conservação dos Recursos Naturais , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Anopheles/parasitologia , Brasil , Humanos , Malária/epidemiologia , Mosquitos Vetores/parasitologia , Plasmodium falciparum/patogenicidade , Floresta Úmida , Análise Espaço-Temporal
19.
J Med Entomol ; 58(3): 1234-1240, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33511394

RESUMO

The increase in malaria transmission in the Amazon region motivated vector control units of the Ministry of Health of Ecuador and Peru to investigate Anopheles (Diptera: Culicidae) species present in transmission hotspots. Mosquitoes were collected using prokopack aspirators and CDC light traps (Ecuador) and human landing catch in Peru. In Ecuador, 84 Anopheles were captured from Pastaza, Morona Santiago, and Orellana provinces and identified morphologically [An. (An.) apicimacula Dyar and Knab, An. (Nys.) near benarrochi, An. (Nys.) near oswaldoi, An. (Nys.) near strodei, An. (An.) nimbus (Theobald, 1902), and An. (Nyssorhynchus) sp.]. In Peru, 1,150 Anopheles were collected in Andoas District. A subsample of 166 specimens was stored under silica and identified as An. near oswaldoi, An. darlingi, and An. (An.) mattogrossensis Lutz and Neiva. COI barcode region sequences were obtained for 137 adults (107 from Peru, 30 from Ecuador) identified by ITS2 PCR-RFLP as An. benarrochi Gabaldon, Cova Garcia, and Lopez and retained in the final analysis. Haplotypes from the present study plus An. benarrochi B GenBank sequences grouped separately from Brazilian An. benarrochi GenBank sequences by 44 mutation steps, indicating that the present study specimens were An. benarrochi B. Our findings confirm the presence of An. benarrochi B in Ecuador and reported here for the first time from the Amazonian provinces of Orellana and Morona Santiago. Furthermore, we confirm that the species collected in Andoas District in the Datem del Maranon Province, Peru, is An. benarrochi B, and we observed that it is highly anthropophilic. Overall, the known distribution of An. benarrochi B has been extended and includes southern Colombia, much of Peru and eastern Ecuador.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Animais , Equador , Malária , Peru
20.
PLoS Negl Trop Dis ; 15(1): e0008211, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493212

RESUMO

Malaria elimination in Latin America is becoming an elusive goal. Malaria cases reached a historical ~1 million in 2017 and 2018, with Venezuela contributing 53% and 51% of those cases, respectively. Historically, malaria incidence in southern Venezuela has accounted for most of the country's total number of cases. The efficient deployment of disease prevention measures and prediction of disease spread to new regions requires an in-depth understanding of spatial heterogeneity on malaria transmission dynamics. Herein, we characterized the spatial epidemiology of malaria in southern Venezuela from 2007 through 2017 and described the extent to which malaria distribution has changed country-wide over the recent years. We found that disease transmission was focal and more prevalent in the southeast region of southern Venezuela where two persistent hotspots of Plasmodium vivax (76%) and P. falciparum (18%) accounted for ~60% of the total number of cases. Such hotspots are linked to deforestation as a consequence of illegal gold mining activities. Incidence has increased nearly tenfold over the last decade, showing an explosive epidemic growth due to a significant lack of disease control programs. Our findings highlight the importance of spatially oriented interventions to contain the ongoing malaria epidemic in Venezuela. This work also provides baseline epidemiological data to assess cross-border malaria dynamics and advocates for innovative control efforts in the Latin American region.


Assuntos
Malária/epidemiologia , Malária/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Emigração e Imigração , Feminino , Humanos , Incidência , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Masculino , Pessoa de Meia-Idade , Plasmodium vivax , Fatores Socioeconômicos , Venezuela/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...